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µ-1,2-Peroxodiiron(III) species have been spectroscopically
identified as reaction intermediates for the dioxygen activating
diiron proteins or some variants such as methane monooxygenase
(MMO), ribonucleotide reductase (RNR), stearoyl-acyl carrier
protein ∆9-desaturase (∆9D), and ferritin.1,2 Some of them are
further activated to bis(µ-oxo)diiron(IV) or bis(µ-oxo)diiron(III,IV)
species, which are responsible for oxidation of substrates. Diiron
centers of those proteins have a common carboxylate-rich environ-
ment (four carboxylate and two N donors for MMO, RNR, and
∆9D). Various synthetic (peroxo)diiron(III) complexes including
three structurally characterized complexes have been developed,
and they provided a chemical basis for understanding of structural
and various spectroscopic properties of the (peroxo)diiron com-
plexes.3-6 To obtain further fundamental insights into structural
and spectroscopic properties and reactivities of the (peroxo)diiron-
(III) species, further model (peroxo)diiron(III) complexes are
needed, which have a biologically relevant ligand environment such
as terminal carboxylate(s) and bridging hydroxide or oxide com-
monly found in diiron(III) forms.1 Here, we report the first struc-
turally characterized (µ-hydroxo)(µ-peroxo)diiron(III) complex
[Fe2(6Me2-BPP)2(OH)(O2)]X (2‚X: X ) CF3SO3 (2‚OTf),
B(3-ClPh)4 (2‚B(3-ClPh)4)) and (µ-oxo)(µ-peroxo)diiron(III) com-
plex [Fe2(6Me2-BPP)2(O)(O2)] (3) with a tripodal ligand (6Me2-
BPP)7 having a terminal carboxylate and the relationship among
ligand environmental effects, spectroscopic properties, and reactiv-
ity.

Reaction of [Fe2(6Me2-BPP)2(O)(OH)](OTf)‚3.5H2O (1)8 with
∼100 equiv of H2O2 in methanol at-80 °C gave a blue complex
2, which can be further converted to a purple complex3 by addition
of Et3N. Crystal structure of2‚B(3-ClPh)4 showed that the complex
has an Fe2(µ-OH)(µ-1,2-O2) core and each iron has a six-coordinate
structure with N3O3 donors (Figure 1A). Two iron centers are
inequivalent; the peroxo oxygen in the Fe1 site is trans to a tertiary
amine nitrogen, while that in the Fe2 site is trans to a carboxylate
oxygen. The structure of3 is similar to2‚B(3-ClPh)4, but unfor-
tunately,µ-oxo andµ-1,2-peroxo groups are disordered over two
positions with 0.5 occupancy (Figure 1B). Detailed discussion about
metric parameters of3 may not be warranted, but comparison of
the structural features with2 is useful. The O1-O2 bond length of
2‚B(3-ClPh)4 is 1.396(5) Å (cf. 1.41(1) Å for3), which is slightly
shorter than those of the (peroxo)diiron(III) complexes (1.406(8)-
1.426(6) Å).4 The Fe‚‚‚Fe distance (3.396(1) Å) of2 is comparable
to those of the complexes with a bridging phenolate or alkoxide

(3.327(2)-3.462(3) Å)4a,b whereas longer than that of3 (3.171(1)
Å). Mössbauer spectra of2‚B(3-ClPh)4 and3 at 80 K showed single
quadrupole doublets withδ (∆EQ) ) 0.50 (1.31) and 0.50 (1.46)
mm/s, respectively. The∆EQ values are comparable to that of1 (δ
(∆EQ) ) 0.44 (1.56) mm/s) but larger than that of [Fe2(6Me2-BPP)2-
(OH)2]2+ (4) (δ (∆EQ) ) 0.42 (1.16) mm/s), suggesting that the
peroxide also acts as a strongerπ-donor and causes a larger electric
field gradient around the Fe(III) centers as the oxo bridge.

It is noted that the bridging hydroxide and oxide significantly
influence the spectroscopic properties. The electronic spectrum of
2‚OTf showed an intense peroxide (πv* orbital)-to-Fe(III) (dπ

orbital) LMCT band5 at 644 nm (ε ) 3000 M-1 cm-1), whereas
that of3 showed a CT band at 577 nm (ε ) 1500 M-1 cm-1) (Figure
2). Such a significant blue shift and low intensity of the CT band
of 3 can be partly ascribed to a strongerπ-donation of the bridging
oxide, which increases the dπ orbital energy of Fe(III) centers
(diminishing the Lewis acidity of Fe(III) centers), increases the
energy gap between dπ orbitals andπv* orbital of the peroxide,
and decreases an overlap between them, leading to a blue shift and
low intensity of the CT band.2 The terminal carboxylate also
influences the CT energy and reactivity. A closely related (µ-oxo)-
(µ-peroxo)diiron(III) complex [Fe2(6Me3-tpa)2(O)(O2)]2+ (5) having
N4 donors exhibits a CT band at 648 nm (ε ) 1200 M-1 cm-1),6,9

which is red-shifted relative to that of3, indicating that the terminal
carboxylate also functions as a stronger donor. In addition,5 can
be converted into a bis(µ-oxo)diiron(III,IV) species by O-O bond
cleavage, which is accelerated by treatment of HClO4. In contrast,
no such conversion was detected for3 and the reaction with HClO4
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Figure 1. ORTEP views (50% probability) of2‚B(3-ClPh)4 (A) and3 (B).
Selected bond distances (Å) and angles (deg) for2‚B(3-ClPh)4: Fe1-O1,
1.867(4); Fe1-O3, 2.006(4); Fe1-O4, 1.986(4); Fe1-N1, 2.208(4); Fe1-
N2, 2.232(5); Fe1-N3, 2.204(4); Fe2-O2, 1.887(4); Fe2-O3, 1.943(4);
Fe2-O6, 1.999(4); Fe2-N4, 2.183(5); Fe2-N5, 2.193(5); Fe2-N6, 2.221-
(5); O1-O2, 1.396(5); Fe1‚‚‚Fe2, 3.396(1); Fe1-O3-Fe2, 118.6(2); Fe1-
O1-O2, 123.1(3); Fe2-O2-O1, 120.4(3); Fe1-O1-O2-Fe2,-14.5(4).
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caused the conversion to2,10 suggesting an increase of basicity of
the bridging oxide by stronger donation of the carboxylate in3.

The resonance Raman spectra of2 and3 (Figure 2c-f) showed
several features which shifted downward by18O-substitution. For
complex2, we assigned two bands at 919 and 896 cm-1 to the
ν(O-O) as a Fermi doublet (the intrinsicνO-O

0 ) 908 cm-1; 881
and 850 cm-1 for an18O2 sample,νO-O

0 ) 861 cm-1).11 The bands
at 548 (18O2: 536 cm-1) and 498 (18O2: 493 cm-1) can be assigned
to theνas(Fe-OOH) + νas(Fe-OO-O) andνs(Fe-OOH), respectively,
based on normal coordinate analysis (NCA).12 The analysis also
indicated that the bands at 473 and 456 cm-1 can be assigned to
νs(Fe-OO-O) as a Fermi doublet (νFe-O

0 ) 460 cm-1; 447 cm-1

for a 18O2 sample). For complex3, a band at 847 cm-1 (18O2: 814
cm-1) can be assigned to theν(O-O) and a band at 465 cm-1

(18O2: 446 cm-1) to theνs(Fe-OO-O). Theν(O-O) of 2 is similar
to those of (peroxo)diiron(III) complexes (880-900 cm-1),3,5

whereas it is significantly higher than that of3 (847 cm-1) and5
(848 cm-1).6 It has been shown that theν(O-O) andνs(Fe-OO-O)
depend on the Fe-O-O angle; as the Fe-O-O angle becomes
larger, theν(O-O) becomes higher and theνs(Fe-OO-O) becomes
lower by mechanical coupling.5 This is also the case for2 (Fe-
O-Oav ) 121.8°) and3 (Fe-O-O ) ∼115°): the ν(O-O) of 2
(908 cm-1) is higher than that of3 (847 cm-1), and theνs(Fe-
OO-O) of 2 (460 cm-1) is lower than that of3 (465 cm-1). However,
a large change in theν(O-O) (∆ ) 61 cm-1) and a small change
in the νs(Fe-OO-O) (∆ ) 5 cm-1) between2 and3 also suggest
the presence of some other contributions such as the bonding nature
of the peroxide as observed for CT energies and intensities; the
stronger donation of the peroxide in2 increases theν(O-O) and
νs(Fe-OO-O), leading to an increase of change in theν(O-O) and
a decrease of change in theνs(Fe-OO-O) by an offset effect.13

It has been proposed that the changes in theν(O-O) and
νs(Fe-OO-O) frequencies for RNR-W48F/D84E (868 and 457
cm-1),2,14 ∆9D (898 and 442 cm-1),15 and ferritin (851 and 485
cm-1)16 depend on the Fe-O-O angles. Very short Fe‚‚‚Fe
distances (∼2.5 Å) have been reported for the peroxo-intermediates
of ferritin17 and RNR-W48A/D84E.18 Such a short Fe‚‚‚Fe distance
requires a small Fe-O-O angle as observed for [Mn2(L)2(O)2-
(O2)]2+ (Mn‚‚‚Mn ) 2.531(7) Å and Mn-O-O ) 106.9°).19

However, for the relatively highν(O-O) frequency (868 cm-1) of
RNR-W48F/D84E, Solomon et al. pointed out that a short (2.5 Å)
Fe‚‚‚Fe distance reported for RNR-W48A/D84E which is proposed
to be analogous to RNR-W48F/D84E is not supported from
spectroscopic analyses for RNR-W48F/D84E.2 A lower CT energy

of RNR-W48F/D84E (∼700 nm) compared to those of the model
complexes suggests the high Lewis acidity of Fe(III) centers in
RNR-W48F/D84E relative to the model complexes except for
[Fe2{HB(3,5-iPr2pz)3}2(O2)(PhCO2)2].2,5

In summary, structures and spectroscopic properties of both (µ-
hydroxo)(µ-peroxo) and (µ-oxo)(µ-peroxo)diiron(III) complexes
provide fundamental chemical insights into the nature of (µ-1,2-
peroxo)diiron(III) complexes, although further comprehensive
structural and spectroscopic data of model complexes and proteins
are needed.
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(14) Moënne-Loccoz, P.; Baldwin, J.; Ley, B. A.; Loehr, T. M.; Bollinger, J.
M., Jr. Biochemistry1998, 37, 14659-14663.

(15) Broadwater, J. A.; Ai, J.; Loehr, T. M.; Sanders-Loehr, J.; Fox, B. G.
Biochemistry1998, 37, 14664-14671.
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Figure 2. Electronic spectra of2‚OTf (a) and3 (b) in CH3OH at-80 °C
and resonance Raman spectra of2 (prepared from H216O2 (c) and H2

18O2

(d)) and3 (prepared from H216O2 (e) and H2
18O2 (f)) in CH3OH at-80 °C.
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